Inverse matrix
Definition . Let A ∈ Mn,n(π) a square matrix, we call inverse matrix of A (if exists) the matrix A−1, such that:
A β A−1 = A−1 β A = In
being In the identity matrix with order n. The set of invertible matrices of order n is denoted by GLn(π), where GL stands for "linear group". (GLn(π), β ) is a non commutative group with respect to multiplication.
Proposition I.1 Given A ∈ Mn,n(π), if the inverse of A exists is unique.
Proof. Let A−1 its inverse. If B is a matrix such that:
BA = I
then:
(BA) A-1 = I A−1
(BAA-1) = B I = B I A-1 = A-1I
si ha quindi:
B = A-1
Theorem I.0 Sufficient condition for a matrix A ∈ Mn,n(π) to possess an inverse A−1 is that det A ≠ 0. In this case the inverse is given by the following relation
where T indicates the "transposition", Aij are the matrices obtained by removing the i-th row and j-th column from A.
Proof. - Proviamo prima che se esiste la matrice inversa di A, allora necessariamente det A ≠ 0. Infatti poichΓ¨ Aβ A-1 = In, det(Aβ A−1) = det In, owing to Binet's Theorem we have
1 = det A β det (A−1)
and this implies det A ≠ 0.
Supposing that det A ≠ 0 we prove that the inverse is calculated as stated above. L'elemento di posto ki nella matrice identitΓ Aβ A-1 Γ¨ in base alla (4.10)
ora se k=i, la sommatoria scritta vale det A, per la definizione di determinante (1.3), e quindi bki =1; se invece k≠ i, mostriamo che tale somma vale 0. Infatti sia A' la matrice ottenuta da A rimpiazzando la riga i con una coppia della riga k. Alterare la riga i non altera i numeri Ai1 ...,Ain. Si vede allora che l'espressione
ak1Ai1+ ak2Ai2 +....+ aknAin
non Γ¨ altro che det A', per la definizione di determinante. Ma A' ha due righe uguali, quindi il suo determinante Γ¨ nullo. Abbiamo quindi provato che l'elemento di posto ki nella matrice A β A-1 vale 1 se k=i, 0 se k≠i.
Example. Calculate the inverse of the matrix
Essendo triangolare det A = 1 β (−1) β 2 = −2 ≠0, then A−1 exists. We have
In the case of order 2 the calculation is particularly simple
In the hyphothesys det A = ad − bc ≠ 0, we have
thus
Theorem 4.11 The set of invertible n Γ n matrices over R forms a group with respect to the matrix multiplication. We denote this group by GLn(R) (βGLβ abbreviates βgeneral linear (group)β).
Proof The associativity of the multiplication in GLn(β) is clear. As shown in (2) in Lemma 4.10, the product of two invertible matrices is an invertible matrix. The neutral element in GLn(β) is the identity matrix In , and since every A β GLn(β) is assumed to be invertible, Aβ1 exists with (Aβ1)β1 = A β GLn(β). β‘