Determinant

The determinant is a very important scalar function defined on square n × n real matrices.

det: Mn,n(𝕂) ⟶ 𝕂

which associates a determined number determinante, to a square matrix.

Definition D.0 - Let A = (aij) ∈ Mn,n(𝕂) a square matrix of order n with coefficients in 𝕂. The determinant of A is defined as

det A = σ S n sgn ( σ ) a 1 σ ( 1 ) a 2 σ ( 2 ) a n σ ( n )

The sum goes over all n! permutations σ of n numbers 1, 2, ..., n, and these permutations form the symmetric group Sn.

sign σ = 1 if σ is an even permutation
−1 if σ is an odd permutation

while σ(i), i = 1, 2, ..., n, is the image of i under the permutation σ.

As an example we calculate the determinant for small values of n. If n = 1, that is the matrix is composed by a signle element, A = a11, we have det A = a11 (the only permutation is the identity permutation, with sign 1).

For n = 2, we have

A = ( a 11 a 12 a 21 a 22 )

there are two permutations of two elements

σ 1 = ( 1 2 1 2 ) , σ 2 = ( 1 2 2 1 )

Si ha sgn(σ1) = 1 e sgn(σ2) = −1, per cui il determinante è lo scalare

det(A) = a11 a22 − a21a12

As last example we consider the case n = 3. There are 3! = 6 permutations of three elements, namely

σ 1 = ( 1 2 3 1 2 3 ) σ 2 = ( 1 2 3 1 3 2 ) σ 3 = ( 1 2 3 1 2 3 ) , σ 4 = ( 1 2 3 2 1 3 ) σ 5 = ( 1 2 3 3 1 2 ) σ 6 = ( 1 2 3 3 2 1 )

Si verifica facilmente che sgn(σ1) = sgn(σ3) = sgn(σ5) = 1, mentre sgn(σ2) = sgn(σ4) = sgn(σ6) = −1, quindi

det(A) = a11 a22 a33 + a12 a23 a31 + a13 a21 a32 − a13a32a31 − a11a23a32 − a12a21a33

As n increases the determinant of n x n matrix is complicated to be calculated directly, from the definition. We shall see other methods which are not based on the definition of determinant.

From the definition some properties which can be easily verified follow.

Proposition D.0 - The determinant of any triangular matrix A (lower, upper, or diagonal) is the product of all diagonal elements: det A = a11a22ann

Proof. Dato che A = (aij) è una matrice triangolare superiore, si ha aij = 0 if i > j. We observe that for every permutation σ of {1, 2, ..., n}, different from id, there exists an index i such that i > σ(i). The product a1σ(1) a2σ(2) ··· anσ(n) is thus zero, given the fact that at least one of its factors is zero. Hence the only permutation giving a non-null addend is id, thus it results det A = a11a22 ann.  □

Proposizione D.2 -If in a square matrix A, the elements of a row (or column) are null then det A=0.

Proposition D.2 - For any square matrix A, we have det AT = det A, or, in other words, the matrix A and its transpose have equal determinants.

det A = det AT

Proof. We have

aijT = aji   (1.3)

per la definizione di determinante si può scrivere:

determinante trasposta

given Eq. (1.3) we have:

determinante trasposta

Il secondo membro della presecente non è altro che det A. La proposizione è così dimostrata.□

Teorema D.0 - Operando una sostituzione nelle righe (o colonne) della matrice A, si ottiene una matrice B, tale da aversi:

B matrice sostituita

avente determinante pari a:

det B = (−1)h A

where h is equal to the inversion of the generic permutation h1, h2, ..., hn

Proof. La sostituzione è tale da aversi:

b1r = ah1rb2r = ah2r ⋅ ⋅ ⋅ bnr = ahnr

with r =1, 2,...,n. Per la (1.2) si ha:

determinante matrice sostituzione

che per la (1.4) può scriversi come:

determinante matrice sostituzione

il secondo membro dell'ultima equazione vale per la (1.2) (-1)h det A, si ha quindi la tesi:

determinante matrice sostituita

«Permutazioni Index Teorema di Laplce »