The Riemann integral

Let's consider the problem of calculating the area under the grapf of the function y = x2 for x ∈[0,1].
We divide up the inteval [0, 1] in n equal subintervals

x i = i n , x i + 1 = i + 1 n , i = 0 , , n 1
calcolo area trapezoide x^2

Fig.1 - L'area sottostante la curva è approssimata dalla somma delle aree dei rettangoli.

Approssimiamo l'area sottesa la curva, con la somma delle aree dei rettangoli:

area trapezoide x^2

For n ⟶ ∞ we obtain

lim n S n = ( n 1 ) n ( 2 n 1 ) 6 n 3 = 1 3

The area is thus 1/3.

Proviamo a generalizzare questo procedimento a qualsiasi funzione, considerando una funzione continua, f: [a, b] ⟶ ℝ. Effettuiamo la partizione dell'intervallo di definizione, in n intervallini, i cui estremi sono individuati dai punti

a = x0,  x1, x2, ..., xn−1,  xn = b

with

xi = a + ih,   h = (ba)/h,   i = 0, ..., n

inside each of the n intervals [xi−1, xi] we pick an arbitrary point ξ ∈ [xn−1, xi]. We define the sum of Cauchy-Riemann, as

S n = i = 1 n f ( ξ i ) ( x i x i 1 ) = b a n i = 1 n f ( ξ i )

The quantity Sn is known as the partial sum.

integrale costruzione aree rettangoli integrale costruzione aree rettangoli

Passando al limite per n tendente ad infinito si passa da una somma ad un integrale:

Teorema 4.2. Given a continuos function f: [a, b] ⟶ ℝ, there exists finite the limit of Sn, indipendently by ξi, called definite integral of f on [a, b] expressed as:

lim n S n = lim n b a n i = 1 n f ( ξ ) = a b f ( x ) d x

If, as we let the number of partions tend to ∞, the partial sum Sn tends to a limit, then we say the function f is Riemann integrable (integrable, hereafter) on [a, b] and the limit to which the partials sums converge is known as the integral of f over [a,b].

A definition of Area

The Riemann integral permits a precise definition of the geometrical concept of "area" under a curve and not viceversa.

Reconsidering the Cauchy-Riemann sum (6.3). Let f ≥ 0 a continuos function on [a,b]. Over each subinterval [xi−1, xi] whose height is the value of f(ξ) with ξ a selected point in the subinterval. The sum Sn is an approximation of the area between the graph of f and the x-axis, in the interval a > x > b. This region is known as trapezoid.

limn ⟶ ∞ Sn = ∫ba f(x) dx = area of the trapezoid

When f has no fixed sign, the integral measures the difference of the positive regions (above the x-axis) and the negative regions (below it). Consider for example sin(x):

funzione seno

because of symmetry we have:

0 2 π s i n ( x ) d x = 0

Length of a Curve

Another important geometrical concept associated with a curve leads to an integration. This is the lenght of arc.

Let y = f(x) a continuous function and f'(x) its interval in the interval [a, b]. An increment dx along the x-axis corresponds to an increment dy = f' dx along the y-axis. Then we have

d l = ( d x ) 2 + ( d y ) 2 = ( d x ) 2 + f ( x ) ( d x ) 2 = 1 + f ( x ) 2 d x

Summing up along all of the infinitesimal distances along the entire length of the curve:

l = a b 1 + f ( x ) 2 d x
«The fourth Declension Index Properties of the integral »